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Intro on group actions

Let (Z,+) be the additive group, seen naturally as a
subgroup of (R,+). The morphism

R× Z→ R, (r,n) 7→ r + n

gives an action of Z on R.
We can then consider the quotient R/Z, i.e. the quotient of R
by the equivalence relation

a ∼ b ⇐⇒ a = b+ n for some n ∈ Z.

If we interpret this phenomenon topologically, we can
identify R/Z with the circle S1.
The canonical projection map R→ S1 is the universal
covering, realizing Z as fundamental group of S1.



Twisted groups

Consider SLr(C) and the cyclic group Z/2Z = {±1}. The map

SLr(C)× Z/2Z→ SLr(C), (M,−1) 7→ ((M)†)−1

gives an action of Z/2Z on SLr(C). Instead of taking the
quotient, we can consider the invariant elements:

SLr(C)Z/2Z = {M |M−1 = M†} = SUr.

Generalizations
• Replacing C with any other domain R with an involution
a 7→ a. For example R = C[t] with t = −t.
• Considering X̃→ X Galois covering of curves and
similarly defining the Z/2Z invariants of SLr(X̃).



Toy example

Consider SL2(C) and its subgroup B of uppertriangular
matrices. Given the actions

µ : SL2(C)× B× SL2(C), (M,N) 7→MN

and (for n ∈ Z)

χn : B× C→ C, (

[
a b
0 a−1

]
, z) 7→ anz

we can construct the quotients

P := SL2(C)/B and O(n) := (SL2(C)× C) /B

where the latter is obtained using

(M, z) ∼ (MN, χ−1n (N)z) N ∈ B.



Toy example

There is a canonical map

πn : O(n)→ P

whose fibres are isomorphic to C. This construction defined
a line bundle on P.

Theorem (Grothendieck)
All line bundles of P are described in this way.

Theorem (B-W,B)
For all n ≥ 0, the set of sections of πn is the standard
representation of SL2(C) of dimension n+ 1.
Conclusion: we can use representation theory to create new
geometric objects and to study them.



Moduli Spaces

We see that P can also be defined as a space solving a
moduli problem.

Moduli space: space which parametrizes algebro/geometric
objects of the same type (up to isomorphism).

Example
Parametrizing spheres in R3.

center (x, y, z) ∈ R3

radius r ∈ R>0
=⇒ R3 × R>0 is the moduli space



P as moduli space

Claim: P parametrizes 1-dimensional vector spaces of C2.
Observe that

0 6= v ∈ C2 gives a subspace 〈v〉 ⊂ C2

and for all λ 6= 0 we have that 〈λv〉 = 〈v〉. Hence

P1 := (C2 \ 0) ∼ where v ∼ w ⇐⇒ v = λw

is the space solving this moduli problem.

It is easy to check that the map

SL2(C)→ C2 \ 0,
[
a b
c d

]
7→ [a,c]

induces an isomorphism between P and P1:



BunSLr
Fix now a smooth curve X of genus g and consider the space
BunSLr parametrizing vector bundles on X of rank r and
having trivial determinant. This means that we associate to
each point of X a complex vector bundle of dimension r and
that they are glued together via an element of SLr .

We can describe the points of this moduli space as a double
quotient. Fix P ∈ X, then

BunG(C) = SLr(X \ P) \ SLr(C((t)))/SLr(C[[t]])

which has this intuitive meaning: every SLr-bundle is
trivialized on X \ P and on a small disk around P, so only
SLr(C(t)) tells us how to glue them on the intersection.



Line bundles of BunSLr
This description is fundamental because it was the key
observation to show that

Theorem
Line bundles of BunSLr are in bijection with Z;

Theorem (Beauville-Laszlo, Faltings)
Let ` ∈ N. The space of sections of O(`) is canonically
isomorphic to a vector space which naturally asises from
representations attached to a central extension of
SLr(C((t))).

We now want to understand what this space is.



Conformal blocks

Conformal blocks (attached to SLr and of level `) are finite
dimensional complex vector spaces

V`((X,P), (SLr,V))

associated with two types of data:

• Geometry: A stable pointed curve (X,P1, . . .Pn).
• Representation theory: n irreducible representations
V1, . . .Vn of SLr of level at most `.

To understand the importance of these objects, we need to
introduce the next moduli space:Mg,n parametrizes stable
pointed curves of genus g.



Sheaves of conformal blocks onMg,n

Fix n representations V of SLr .

Theorem (TUY)
Associating to each
pointed curve (X,P) the
conformal block
V`((X,P), (SLr,V)) defines
a vector bundle

V`(V) onMg,n.

⇒ As long as X and X′ have the same genus

dimV`((X,P), (SLr,V)) = dimV`((X′,P), (SLr,V))



Relation with BunSLr

Theorem (TUY)
When inserting the trivial representation, the bundle V`(C)
is independent of the points chosen on the curves, i.e. it
descends to a bundle onMg. The fibers over a curve X are
simply denoted V`(X).
We can rephrase the theorem on sections of O(`) as:

Theorem (B-L,F)
The space of sections of O(`) is isomorphic to V`(X).

⇒We can compute the dimension of the space of global
sections of O(`) independently of the curve we started with.

We need to understand if there is a better curve where to
carry the computation!



Factorization

Let (X,P) be a curve with only one node Q. Then the
normalization XN is canonically marked by three poins: P, Q+

and Q−. Under this assumptions

Theorem (TUY)
V`((X,P), (SLr,V)) =

⊕
W V`((XN,P,Q+,Q−), (SLr,V,W ,W∗))

⇒ If we start with a nodal curve, we can reduce the
computation to curves of lower genus: it is then enough to
compute it on the case of X = P1 with three marked points.

Using this method it was possible to exhibit an explicit
formula for V`(X): the Verlinde formula [Faltings].



Generalizations

I generalized the construction of conformal blocks to the
case of twisted groups H = SLr(X̃)Z/2Z arising from Galois
coverings of curves X̃→ X.

Twisted conformal blocks are finite dimensional complex
vector spaces

V`((X̃→ X,P), (H,V))

associated with two types of data:

• Geometry: A stable covering of curves (X̃→ X,P1, . . .Pn).
• Representation theory: n irreducible representations Vi
of H`(V)|Pi of level at most `.



Properties of Twisted Conformal Blocks [D.]

They satisfy similar properties to the classical ones:

• They fit together to define a vector bundle V`(V) on the
stack Hurg,n parametrizing coverings of curves;
• When they depend on the trivial representation only,
they descend to bundles on Hurg.
• Factorization rules still hold:

V`((X̃→ X,P),V) =
⊕
W

V`((X̃N → X̃,P,Q+,Q−), (V,W,W∗))



A couple of open questions

• Similarly to the case of SLr bundles, also in this case line
bundles BunH has been studied, but it is more
complicate.

We expect that global sections of line bundles will be
described by appropriate twisted conformal blocks
associated to trivial representation.

• Computing a twisted Verlinde formula for these bundles
will need a better understanding of degeneration of
coverings and representations of H.


